УДК 621.165

*А. В. РУСАНОВ*, чл.-корр. НАНУ, проф.; зав. отд. ИПМаш НАН Украины, Харьков;

*А. Л. ШУБЕНКО*, чл.-корр. НАНУ, проф.; зав. отд. ИПМаш НАН Украины, Харьков;

*В. Л. ШВЕЦОВ*, канд. техн. наук; главный конструктор паровых турбин ОАО «Турбоатом», Харьков;

*А. В. СЕНЕЦКИЙ*, канд. техн. наук; с.н.с. ИПМаш НАН Украины, Харьков

## РАЗРАБОТКА ПРОТОЧНОЙ ЧАСТИ ЦВСД ПАРОВОЙ ТУРБИНЫ К-1250 НА ОСНОВЕ МЕТОДОВ РАСЧЕТА ТРЕХМЕРНЫХ ВЯЗКИХ ТЕЧЕНИЙ

Представлены результаты расчётных исследований трехмерных течений в проточной части ЦВСД новой паровой турбины К-1250 ОАО «Турбоатом» для блоков атомных электростанций. Численные исследования выполнены с помощью программного комплекса *IPMFlow*. Проточная часть ЦВСД К-1250 спроектирована с использованием разработанного в ИПМаш НАН Украины метода параметризации и аналитического профилирования лопаток. Показано, что в предлагаемом ЦВСД за счет применения современных подходов к профилированию лопаточных аппаратов, а также формированию меридиональных обводов КПД проточных частей ЦВД и ЦСД без учета отборов пара составил 96,6 и 96,4 %, соответственно.

Ключевые слова: паровая турбина, цилиндр высокого давления (ЦВД), цилиндр среднего давления (ЦСД), проточная часть, пространственное течение, направляющие и рабочие лопатки, моделирование ступеней турбины.

#### Введение

На сегодняшний день турбины производства ОАО «Турбоатом» успешно работают на электростанциях более чем 45 стран Европы, Азии, Америки и Африки. Более 260 паровых турбин суммарной мощностью свыше 60 млн кВт изготовлены для тепловых электростанций, из них 55 турбин для 16 ТЭС дальнего зарубежья. Для 24 АЭС изготовлено 169 турбин суммарной мощностью более 60 млн кВт, из них 40 турбин для 7 АЭС дальнего зарубежья. Доля «Турбоатом» в поставках турбин для АЭС на мировом рынке составляет 13 %, по этому показателю ОАО «Турбоатом» занимает 4-е место в мире [1].

В последние 15–20 лет при проектировании проточных частей турбомашин широко применяют методы моделирования пространственных вязких течений, основанные на численном интегрировании уравнения Рейнольдса [2]. Их использование необходимо для обеспечения высокого уровня аэродинамического совершенствования турбоустановок, уменьшения объема экспериментальных исследований и сокращения времени проектирования.

В статье представлены результаты расчетных исследований трехмерных течений в проточной части ЦВСД новой паровой турбины К-1250 ОАО «Турбоатом» для блоков атомных электростанций.

#### Метод расчета течения

Для численного исследования трехмерных течений пара в проточной части паровой турбины применялся программный комплекс *IPMFlow*, являющийся развитием программ *FlowER* и *FlowER-U* [3, 4]. Математическая модель комплекса основана на численном интегрировании осредненных по Рейнольдсу нестационарных уравнений

© А.В. Русанов, А.Л. Шубенко, В.Л. Швецов, А.В. Сенецкий, 2015

Навье-Стокса с помощью неявной квазимонотонной *ENO*-схемы повышенной точности и двухпараметрической дифференциальной модели турбулентности *SST* Ментера.

Для учёта термодинамических свойств рабочего тела используется интерполяционно-аналитический метод аппроксимации уравнений формуляции *IAPWS*-95 [5, 6]. Результаты расчетов, полученные с помощью программного комплекса *IPMFlow*, обладают необходимой достоверностью как по качественной структуре течения, так и по количественной оценке характеристик изолированных турбинных решеток и проточных частей турбомашин в целом [7, 8].

## Метод аналитического профилирования лопаточных венцов осевого типа

Для построения геометрии лопаточного венца проточной части осевой турбины используется метод параметризации и аналитического профилирования лопатки [9], задаваемой произвольным набором плоских профилей, каждый из которых рассматривается в декартовой системе координат с осью абсцисс, параллельной оси турбины, и осью ординат, совпадающей с фронтом решетки (рис. 1).



Рис. 1 – Решетка профилей

Профиль описывается входной и выходной кромками, а также кривыми спинки и корытца. Входная и выходная кромки являются окружностями, а кривые спинки – многочленами 5-го порядка, корытца – многочленами 4-го порядка вида:

$$y(x) = \sum_{i=0}^{5} a_i x^i$$
,  $a_i = \text{const}$ ; (1)

$$y(x) = \sum_{i=0}^{4} a_i x^i$$
,  $a_i = \text{const}$ . (2)

Для задания решётки профилей исходными данными являются:  $b_x$  – ширина профиля;  $\alpha_1$  – скелетный угол решётки на входе;  $r_1$  – радиус входной кромки;  $\alpha_{2ef}$  – эффективный угол выхода потока;  $r_2$  – радиус выходной кромки; t – шаг решётки;  $\Delta \alpha_1$ ,  $\Delta \alpha_2$  – углы «заострения» входной и выходной кромок;  $\alpha_{2ck}$  – угол «скоса» спинки,

 $\alpha_{co} = \alpha_{2s} + \alpha_{2ck}; 1_{cn}, 2_{cn}, 1_{kop}, 2_{kop}$  – точки сопряжения входных и выходных кромок с кривыми спинки и корытца (см. рис. 1).

Коэффициенты кривой (1), описывающей спинку, рассчитываются итерационно из соотношений

$$\begin{cases} y'_{cn}(x_{1cn}) = tg(\alpha_{1} + \Delta \alpha_{1}) \\ y''_{cn}(x_{1cn}) = \{y''_{cn,0}\} \\ y_{cn}(x_{0}) = y_{0} \\ y'_{cn}(x_{0}) = tg(\alpha_{co}) \\ y_{cn}(x_{2cn}) = tg(\alpha_{cs}) \end{cases}$$
(3)

Варьируемыми параметрами для соотношений (3) являются  $\alpha_{2s}$  и  $y_0''$ , подбор которых должен обеспечить заданную величину горла решетки O, а также минимальное значение максимальной кривизны на множестве кривых (1) [9]. Величина горла определяется по заданным значениям шага решетки и эффективному углу

$$O = t \cos \alpha_{2ef}$$
.

После определения кривой спинки и вписывания входной и выходной кромок итерационно рассчитываются коэффициенты кривой (2) для корытца с использованием соотношений

$$\begin{cases} y_{\kappa op}(x_{1\kappa op}) = y_{1\kappa op} \\ y'_{\kappa op}(x_{1\kappa op}) = tg(\alpha_1 - \Delta \alpha_1) \\ y''_{\kappa op}(x_{1\kappa op}) = \{y''_{\kappa op,0}\} \\ y_{\kappa op}(x_{2\kappa op}) = y_{2\kappa op} \\ y'_{\kappa op}(x_{2\kappa op}) = tg \alpha_{2c} \end{cases}$$

$$(4)$$

где  $x_{1c}$ ,  $y_{1c}$ ,  $x_{2c}$ ,  $y_{2c}$  – координаты касания кривой корытца с окружностями входной и выходной кромок, которые определяются по заданному углу  $\alpha_1 - \Delta \alpha_1$  на входной кромке и варьируемому углу  $\alpha_{2c}$  на выходной кромке. Угол  $\alpha_{2c}$  выбирается в интервале  $\alpha_{co}$  и  $\alpha_{2s}$  таким образом, чтобы обеспечить минимальное значение максимальной кривизны кривой корытца, либо задаётся равными  $\alpha_{2s} - \Delta \alpha_2$  [10, 11].

## Исходные данные для газодинамических расчетов и проектирования проточных частей ЦВД и ЦСД паровой турбины К-1250

Исходными данными для трехмерных газодинамических расчетов и проектирования проточных частей ЦВД и ЦСД паровой турбины К-1250 были результаты теплового расчета. Основные геометрические и газодинамические характеристики ЦВСД полученные в тепловом расчете представлены в табл. 1–4. На рис. 2 показан продольный разрез прототипа ЦВСД паровой турбины К-1250.

ЦВД состоит из 8 ступеней, образующих 3 отсека, состоящих из: 1–4, 5–6 и 7–8 ступеней соответственно, а ЦСД включает 3 ступени, образующих 2 отсека, состоящих из: 1 и 2–3 ступеней соответственно. Между отсеками расположены регенеративные отборы пара.

Таблица 1.

| ( | сновные геометрические | характеристики | ступеней проточно | й части ЦВД |
|---|------------------------|----------------|-------------------|-------------|
|   |                        |                |                   |             |

| № ст. | $D_{\rm cp  HA}$ , мм | <i>l</i> <sub>НА</sub> , мм | $D_{\rm ср PK}$ , мм | <i>l</i> <sub>РК</sub> , мм | <i>Z</i> <sub>НА</sub> , шт | <i>Z</i> <sub>РК</sub> , шт | <i>α</i> <sub>1</sub> , градус | β2, градус | β <sub>1</sub> , градус |
|-------|-----------------------|-----------------------------|----------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------|------------|-------------------------|
| 1     | 1951,0                | 167,0                       | 1956,0               | 172,0                       | 56                          | 68                          | 13,04                          | 20,55      | 27,75                   |
| 2     | 1981,5                | 197,5                       | 1993,0               | 209,0                       | 56                          | 68                          | 13,05                          | 19,70      | 27,75                   |
| 3     | 2018,0                | 234,0                       | 2033,0               | 249,0                       | 56                          | 68                          | 13,30                          | 19,35      | 27,75                   |
| 4     | 2054,0                | 270,0                       | 2069,0               | 285,0                       | 50                          | 60                          | 13,25                          | 19,50      | 27,75                   |
| 5     | 2090,0                | 306,0                       | 2107,0               | 323,0                       | 50                          | 60                          | 13,05                          | 19,30      | 27,75                   |
| 6     | 2139,0                | 355,0                       | 2158,0               | 374,0                       | 66                          | 56                          | 13,85                          | 18,80      | 36,00                   |
| 7     | 2181,0                | 397,0                       | 2203,0               | 419,0                       | 66                          | 54                          | 14,55                          | 18,90      | 43,50                   |
| 8     | 2247,0                | 463,0                       | 2279,0               | 495,0                       | 66                          | 52                          | 16,10                          | 19,40      | 51,10                   |



Рис. 2 – Продольный разрез ЦВСД турбины К-1250

Таблица 2.

Основные геометрические характеристики ступеней проточной части ЦСД

| № ст. | $D_{\rm cp  HA}$ , мм | <i>l</i> <sub>НА</sub> , мм | $D_{\rm ср PK}$ , мм | <i>l</i> <sub>РК</sub> , мм | <i>Z</i> <sub>НА</sub> , шт | <i>Z</i> <sub>РК</sub> , шт | $\alpha_1$ , градус | β2, градус | β <sub>1</sub> , градус |
|-------|-----------------------|-----------------------------|----------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|------------|-------------------------|
| 1     | 3277,0                | 225,0                       | 3283,0               | 237,0                       | 142                         | 220                         | 14,33               | 20,70      | 34,44                   |
| 2     | 3370,0                | 330,0                       | 3423,5               | 393,5                       | 142                         | 170                         | 14,56               | 19,00      | 44,29                   |
| 3     | 3535,5                | 515,5                       | 3589,5               | 584,5                       | 142                         | 100                         | 13,71               | 18,82      | 58,64                   |

Таблица 3.

Основные газодинамические параметры в зазорах между ступенями ЦВД

| Мо ст   | Полное давление на                 | Плотность на входе   | Полная температура     | Статическое давление                    |
|---------|------------------------------------|----------------------|------------------------|-----------------------------------------|
| JNº C1. | входе <i>P</i> <sub>вх</sub> , МПа | ρ, кг/м <sup>3</sup> | на входе <i>t</i> , °С | на выходе <i>Р</i> <sub>вых</sub> , МПа |
| 1       | 6,6930                             | 34,746               | 282,8                  | 5,3754                                  |
| 2       | 5,3754                             | 27,378               | 268,5                  | 4,3252                                  |
| 3       | 4,3252                             | 21,780               | 255,0                  | 3,4692                                  |
| 4       | 3,4692                             | 17,369               | 242,0                  | 2,7740                                  |
| 5       | 2,7740                             | 13,870               | 229,5                  | 2,1959                                  |
| 6       | 2,1959                             | 10,992               | 217,5                  | 1,7297                                  |
| 7       | 1,7297                             | 8,715                | 205,2                  | 1,3556                                  |
| 8       | 1,3556                             | 6,886                | 193,5                  | 1,0828                                  |

Таблица 4.

| N⁰  | Полное давление на                 | Плотность на               | Полная температура | Статическое давление на              |
|-----|------------------------------------|----------------------------|--------------------|--------------------------------------|
| CT. | входе <i>P</i> <sub>вх</sub> , МПа | входе ρ, кг/м <sup>3</sup> | на входе $t$ , °C  | выходе <i>Р</i> <sub>вых</sub> , МПа |
| 1   | 1,0070                             | 5,179                      | 269,6              | 0,7070                               |
| 2   | 0,7070                             | 3,701                      | 227,7              | 0,5003                               |
| 3   | 0,5003                             | 2,670                      | 189,5              | 0,3551                               |

Основные газодинамические параметры в зазорах между ступенями ЦСД

Методика выполнения трехмерных расчетов, построения расчетной сетки и выбора характерных сечений для определения интегральных газодинамических характеристик базировалась на следующем:

– расчеты проводились по «отсекам». В качестве отсека выбиралась группа последовательно расположенных ступеней с приблизительно одинаковым массовым расходом пара, т. е. между которыми нет значительных отборов рабочего тела;

 при расчетах не учитывались надбандажные, междисковые и диафрагменные протечки, отборы рабочего тела, а также влияние влажности пара на показатели экономичности проточной части;

– отображение физической области на расчетную выполнялось с помощью расчетной сетки *H*-типа. Размерность сетки в каждом венце составляла 80×80×96 ячеек, т. е. более 1,2 млн. ячеек в одной ступени;

– термодинамические свойства рабочего тела описывались уравнением состояния *IAPWS*-95 согласно которым в зоне фазового перехода пар считается в равновесном состоянии;

– при расчетах обмен данными между смежными венцами осуществлялся осредненными в окружном направлении газодинамическими параметрами в областях стыковки расчетных сеток. Расчетные сетки смежных венцов стыковались приблизительно посредине осевых межвенцовых и межступенчатых зазоров;

– осредненные параметры для интегральных характеристик определялись на границах расчетных сеток – вход в венец НА (направляющий аппарат), в осевом зазоре между НА и РК (рабочее колесо), на выходе из РК.

При разработке проточной части сохранялись высоты лопаток РК в соответствии с табл. 2–3, а число лопаток НА и РК определялось из условия максимума КПД и удовлетворения требованиям вибрационной прочности. Осевые размеры из условий максимально возможных габаритов проточных частей для ЦВД не должны превышать 3000 мм (от входной кромки НА первой ступени до выходной кромки РК последней ступени), а для ЦСД – 1650 мм.

## Результаты и анализ расчета течения пара в ЦВД паровой турбины К-1250

В результате проведенных исследований разработана трехмерная модель проточной части ЦВД паровой турбины К-1250, вид которой представлен на рис. За в табл. 5 – основные геометрические характеристики. Лопатки направляющих аппаратов первых четырех ступеней и рабочие лопатки первых двух ступеней имеют постоянные сечения, остальные лопатки выполнены с переменными по высоте сечениями профилей (рис. 4). Bce разработаны с помощью описанного выше лопатки метода профилирования. Для уменьшения отрывов потока периферийные обволы спроектированы плавными, а лопатки НА начиная с 5-й ступени выполнены с увеличивающейся по высоте хордой (см. рис. 3а и рис. 4).



Рис. 5 – Картина обтекания НА и РК в средних сечениях ступеней 5, 6 ЦВД турбины К-1250: *а* – НА 5-я ступень; *б* – РК 5-я ступень; *в* – НА 6-я ступень; *г* – РК 6-я ступень

Таблица 5.

| № ст. | $D_{\rm cp HA}$ , мм | <i>l</i> <sub>НА</sub> , мм | $D_{\rm ср PK}$ , мм | <i>l</i> <sub>РК</sub> , мм | <i>Z</i> <sub>НА</sub> , шт | <i>Z</i> <sub>РК</sub> , шт | α <sub>1</sub> , градус | β2, градус | β1, градус |
|-------|----------------------|-----------------------------|----------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------|------------|------------|
| 1     | 1951,0               | 167,0                       | 1951,9               | 172,8                       | 48                          | 64                          | 12,43                   | 20,07      | 60,93      |
| 2     | 1963,3               | 183,6                       | 1987,4               | 211,8                       | 48                          | 64                          | 12,95                   | 19,88      | 57,92      |
| 3     | 1999,9               | 223,2                       | 2020,8               | 248,4                       | 48                          | 64                          | 13,43                   | 19,68      | 54,64      |
| 4     | 2039,3               | 265,5                       | 2057,2               | 284,3                       | 48                          | 64                          | 14,19                   | 21,18      | 49,47      |
| 5     | 2070,2               | 295,8                       | 2093,5               | 320,5                       | 48                          | 64                          | 13,66                   | 19,74      | 50,2       |
| 6     | 2116,5               | 341,8                       | 2143,3               | 371,5                       | 48                          | 64                          | 14,23                   | 20,2       | 45,4       |
| 7     | 2159,9               | 386,2                       | 2185,6               | 414,1                       | 46                          | 62                          | 15,14                   | 19,97      | 38,38      |
| 8     | 2215,5               | 442,4                       | 2255,1               | 483,6                       | 44                          | 56                          | 17,42                   | 20,44      | 11,83      |

Основные геометрические характеристики ступеней проточной части ЦВД

В качестве примера на рис. 5 представлена картина визуализации обтекания ступеней № 5 и № 6 ЦВД. В средних сечениях наблюдается благоприятная картина течения. Благодаря использованию гладких профилей графики распределения статического давления на поверхностях лопаток монотонные (рис. 6).





В остальных ступенях также наблюдается благоприятная картина течения, за счет чего обеспечивается высокий уровень газодинамической эффективности ЦВД в целом (табл. 6).

КПД ступеней ЦВД паровой турбины К-1250

Таблица 6.

| Параметр                      | Номер ступени |       |       |       |       |       |       |       |  |  |
|-------------------------------|---------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| Параметр                      | 1             | 2     | 3     | 4     | 5     | 6     | 7     | 8     |  |  |
| КПД без учета отборов пара, % | 95,82         | 96,35 | 96,49 | 96,91 | 96,61 | 96,93 | 96,86 | 97,08 |  |  |

Из представленных в табл. 6 результатов видно, что все ступени конструкции ЦВД имеют высокое значение КПД. Коэффициент полезного действия разработанной

проточной части ЦВД без учетов отборов пара составил 96,6 %, а с учетом отборов – 96,0 %.

# Результаты и анализ расчета течения пара в ЦСД паровой турбины К-1250

Подобно ЦВД разработана трехмерная модель ЦСД, вид которой представлен на рис. 7*a* в табл. 7 приведены ее основные геометрические характеристики. Лопатки направляющих аппаратов и рабочих колес исполнены с переменными по высоте профилями (рис. 8). Для уменьшения отрывов потока периферийные обводы спроектированы плавными, а лопатки НА выполнены с увеличивающейся по высоте хордой (см. рис. 7*a* и рис. 8).



Рис. 9 – Картина обтекания НА и РК в средних сечениях 2-ой ступени ЦСД турбины К-1250: *a* – НА 2-я ступень; *б* – РК 2-я ступень

Таблица 7.

Основные геометрические характеристики ступеней проточной части ЦСД

| № ст. | $D_{\rm cp HA}$ , мм | $l_{\rm HA}$ , мм | $D_{\rm ср PK}$ , мм | <i>l</i> <sub>РК</sub> , мм | <i>Z</i> <sub>НА</sub> , шт | <i>Z</i> <sub>РК</sub> , шт | <i>α</i> <sub>1</sub> , градус | β2, градус | β1, градус |
|-------|----------------------|-------------------|----------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------|------------|------------|
| 1     | 2576,0               | 436,0             | 2577,1               | 450,1                       | 50                          | 78                          | 17,7                           | 24,04      | 52,52      |
| 2     | 2596,5               | 482,4             | 2659,7               | 564,0                       | 50                          | 78                          | 17,27                          | 22,66      | 46,89      |
| 3     | 2701,9               | 619,4             | 2783,2               | 717,5                       | 50                          | 78                          | 18,0                           | 23,22      | 36,12      |

На рис. 9 представлена визуализация течения, а на рис. 10 распределение статического давления на поверхностях лопаток 2-ой ступени. По представленным результатам можно сделать выводы о благоприятной картине течения в ЦСД.





Разработанная проточная часть ЦСД имеет высокий уровень газодинамической эффективности (табл. 8).

Суммарный коэффициент полезного действия разработанной проточной части ЦСД без учета отборов пара составил 96,4 %, а с учетом отборов – 94,3 %.

Таблица 8.

КПД ступеней ЦСД паровой турбины К-1250

| Параметр                      | Номер ступени |      |       |  |  |  |
|-------------------------------|---------------|------|-------|--|--|--|
| Tupamerp                      | 1             | 2    | 3     |  |  |  |
| КПД без учета отборов пара, % | 96,37         | 96,2 | 96,72 |  |  |  |

#### Выводы

На основе использования современных методов расчета трехмерных вязких течений, параметризации, аналитического профилирования лопаток и меридиональных обводов разработана проточная часть ЦВСД новой паровой турбины К-1250. Предложенная проточная часть имеет высокий уровень газодинамического совершенства и обеспечивает КПД ЦВД и ЦСД без учета отборов пара 96,6 и 96,4 % соответственно. С учетом отборов пара КПД ЦВД составляет 96,0 %, а ЦСД – 94,3 %.

Список литературы: 1. Турбоатом. Материал из Википедии — свободной энциклопедии [Электронный ресурс]. – Режим доступа: https://ru.wikipedia.org/wiki/%D2%F3%F0%E1%EE%E0%F2%EE%EC. – Загл. с экрана. – 01.12.2014. 2. ANSYS, Inc. [Электронный ресурс]. – Режим доступа: http://www.ansys.com/. – Загл. с экрана. – 02.12.2014. 3. А. с. Комплекс програм розрахунку тривимірних течій газу в багатовінцевих турбомашинах «FlowER» [Текст] / С. В. Єршов, А. В. Русанов. – Державне агентство України з авторських та суміжних прав, ПА № 77; 19.02.96. – 1 с. 4. Русанов, А. В. Математическое моделирование нестационарных газодинамических процессов в проточных частях турбомашин [Текст] / А. В. Русанов, С. В. Ершов. – Харьков : ИПМаш НАН Украины, 2008. – 275 с. 5. IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. – Аvailable from: http://www.iapws.org. 6. Русанов, А. В. Моделирование 3D течений в проточной части ЦНД паровой турбины с использованием системы уравнений термодинамических свойств воды и водяного пара IAPWS-95 [Текст] / А. В. Русанов, П. Лампарт, Н. В. Пащенко // Авиационно-космическая техника и технология. – 2012. – № 7(94). – С. 107–113. – ISSN 1727-7337.

7. Lampart, P. Validation of turbomachinery flow solver on turbomachinery test cases [Text] / P. Lampart, S. Yershov, A. Rusanov // International conference SYMKOM'02: Compressor & turbine stage flow path theory, experiment & user verification, Cieplne Maszyny Przeplywowe. Turbomachinery, Politechnika Lodzka, Lodz, Poland. - 2002. - No. 122. - Р. 63-70. 8. Хомылев, С. А. Численное исследование обтекания турбинных решеток профилей: часть 1 – верификация расчетного метода [Текст] / С. А. Хомылев, С. Б. Резник, С. В. Ершов // Энергетические и теплотехнические процессы и оборудование. Вестник НТУ «ХПИ» : сб. науч. трудов. – Харьков : НТУ «ХПИ», 2008. – № 6. – С. 23–31. 9. Русанов, А. В. Метод аналитического профилирования лопаточных венцов проточных частей осевых турбин [Текст] / А. В. Русанов, Н. В. Пащенко, А. И. Косьянова // Восточно-Европейский журнал передовых технологий. – 2009. – № 2/7(38). – С. 32–37. – ISSN 1729-3774. 10. Бойко, А. В. Основы теории оптимального проектирования проточной части осевых турбомашин [Текст] / А. В. Бойко, Ю. Н. Говорущенко. - Харьков : Вища школа, 1989. – 217 с. 11. Разработка проточной части ЦСД паровой турбины Т-125/150-12,8 на основе использования современных компьютерных технологий [Текст] / А. В. Русанов, А. Л. Шубенко, А. Ю. Култышев, В. Н. Билан, М. Ю. Степанов, А. В. Сенецкий, Н. В. Пащенко // Вісник НТУ «ХПІ». Серія: Енергетичні та теплотехнічні процеси й устаткування. - Харків : НТУ «ХПІ», 2014. - № 11(1054). - С. 16-29. - Бібліогр.: 10 назв. - ISSN 2078-774X.

Bibliography (transliterated): 1. "Turboatom." Material iz Vikipedii – svobodnoj jenciklopedii. Wikimedia Foundation, Inc. Web. 01 December 2014 <a href="https://ru.wikipedia.org/wiki/%D2%F3%F0%E1%EE%E0%">https://ru.wikipedia.org/wiki/%D2%F3%F0%E1%EE%E0%</a> F2%EE%EC>. 2. "ANSYS." ANSYS., Inc. Web. 02 December 2014 <http://www.ansys.com/>. 3. Ershov, S. V., and A. V. Rusanov. "Kompleks program rozrahunku trivimirnih techij gazu v bagatovincevih turbomashinah "FlowER"." [Patent] A.s. Derzhavne agentstvo Ukraïni z avtors'kih ta sumizhnih prav. PA No 77. 19 February 96. Print. 4. Rusanov, A. V., and S. V. Ershov. Matematicheskoe modelirovanie nestacionarnyh gazodinamicheskih processov v protochnyh chastjah turbomashin. Kharkov : IPMash NAN Ukrainy, 2008. Print. 5. Harvey, A., A. Anderko, M. Rziha and others. "The International Association for the Properties of Water and Steam". IAPWS, Inc. IAPWS. Web. 20 December 2014 <a href="http://www.iapws.org">http://www.iapws.org</a>>. 6. Rusanov, A. V., P. Lampart and N. V. Pashhenko. "Modelirovanie 3D techenij v protochnoj chasti CND parovoj turbiny s ispol'zovaniem sistemy uravnenii termodinamicheskih svojsty vody i vodianogo para IAPWS-95." Aviacionnokosmicheskaja tehnika i tehnologija. No 7(94). 2012. 107-113. ISSN 1727-7337. Print. 7. Lampart, P., S. Yershov and A. Rusanov. "Validation of turbomachinery flow solver on turbomachinery test cases." International conference SYMKOM'02: Compressor & turbine stage flow path theory, experiment & user verification, Cieplne Maszyny Przeplywowe. Turbomachinery, Politechnika Lodzka, Lodz, Poland. No 122. 2002. 63-70. Print. 8. Homylev, S. A., S. B. Reznik and S. V. Ershov. "Chislennoe issledovanie obtekanija turbinnyh reshetok profilej: chast' 1 - verifikacija raschetnogo metoda." Jenergeticheskie i teplotehnicheskie processy i oborudovanie. Vestnik NTU "KhPI" : sb. nauch. trudov. No 6. Kharkiv : NTU "KhPI", 2008. 23-31. Print. 9. Rusanov, A. V., N. V. Pashhenko and A. I. Kos'janova. "Metod analiticheskogo profilirovanija lopatochnyh vencov protochnyh chastej osevyh turbin." Vostochno-Evropejskij zhurnal peredovyh tehnologij 2/7(38) (2009): 32-37. ISSN 1729-3774. Print. 10. Boiko, A. V., and Yu. N. Govorushhenko. Osnovy teorii optimal'nogo proektirovanija protochnoj chasti osevyh turbomashin. Kharkov : Vishha shkola, 1989. Print. 11. Rusanov, A. V., et al. "Razrabotka protochnoj chasti CSD parovoj turbiny T-125/150-12,8 na osnove ispol'zovanija sovremennyh komp'juternyh tehnologij." Visnik NTU "KhPI". Serija: Energetichni ta teplotehnichni procesi j ustatkuvannja. No 11(1054). Kharkov : NTU "KhPI", 2014. 16-29. ISSN 2078-774X. Print.

Поступила (received) 06.01.2015